

Elastic Tailoring of Composite Structures by Fibre Steering

Calum J. McInnes, Alberto Pirrera, Byung Chul Kim, Rainer M.J. Groh

Doctoral Research Symposium 2023

4th April 2023

bristol.ac.uk/composites

University of BRISTOL

EPSRC Centre for Doctoral Training in Composites Science, Engineering and Manufacturing

Engineering and Physical Sciences Research Council

Motivation: Lightweight Aerospace Structures

- Increasing use of advanced composites in aerospace structures
- Mass efficiency is a key design driver
 - Larger payload capacity
 - Lower fuel burn
 - Enable new economic opportunities

Increasing Use of Advanced Composites in Aerospace

Elastic Tailoring of Composite Structures by Fibre Steering 4th April 2023

Boeing 7E7 Dreamliner Material Use

University of BRISTOL

RC Centre for Doctora

ning in Composites Science

neering and Manufacturing

Context: Fibre-Steered Composites

- Steering of composite material tapes produces non-constant fibre angle across a ply to redirect load paths and tailor performance
- In-plane shearing of material tows by Continuous Tow Shearing (CTS) process along curvilinear reference eliminates potential defects and allows tessellation
- CTS process exhibits nonlinear orientation-thickness coupling and allows periodic fibre steering

-directior

Methodology: Structural Problem

- Application
 - Common aerospace problem of simply supported panel under uniaxial compression

- Hypothesis
 - Can a novel fibre-steered panel have a greater load carrying capacity than a conventional straight fibre panel?
- Constraints
 - Enforce 'design' load

Elastic Tailoring of Composite Structures by Fibre Steering 4th April 2023

₩.

EPSRC Centre for Doctoral Training in Composites Science, Engineering and Manufacturing

Results: Design for Load-Carrying Capacity

Elastic Tailoring of Composite Structures by Fibre Steering 4th April 2023

Engineering and Physical Sciences Research Council EPSRC Centre for Doctoral

Conclusions & Future Work

- Significant scope for performance tailoring
- Increased design space allows for novel design
- Fibre-steered structures can achieve greater mass-specific performance
- Meta-heuristic optimsiation to identify true solution space minima
- Addition of geometric features (cutouts)

Numerically Discretised simply supported CTS Plate under compression

Elastic Tailoring of Composite Structures by Fibre Steering 4th April 2023

Holed Fibre-Steered Plate

Engineering and Physical Sciences Research Council

PSRC Centre for Doctoral raining in Composites Science, ngineering and Manufacturing

Manufactured CTS Plate

Questions?

calum.mcinnes@bristol.ac.uk

References

[1] R. Wanhill, Carbon Fibre Polymer Matrix Structural Composites, Springer, 2016

[2] B. C. Kim, K. Potter and P. M. Weaver, "Continuous tow shearing for manufacturing variable angle tow composites," Composites: Part A, vol. 43, pp. 1347-1356, 2012

bristol.ac.uk/composites

University of BRISTOL

EPSRC Centre for Doctoral Training in Composites Science, Engineering and Manufacturing

Engineering and Physical Sciences Research Council